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ABSTRACT 

Background: Despite significant efforts, the artemisinin-based drugs are still very 
expensive due to the limited production of this metabolite within wild Artemisia spp. 
plants. Therefore, the current work set out to evaluate the effect of chitosan 
nanoparticles, as a novel elicitor to characterize the expression of genes functioning in 
artemisinin synthesis pathway using a comparative experimental investigation.  
Methods: The suspension cultures of A. anuua were exposed to 5, 10, 15 mg/L of 
chitosan nanoparticles (during 8, 24, 48 and 72 h upon treatment). The expression of 
DBR2, SQS, CYP, ADS, CPR and ALDH genes were quantified by qRT-PCR technique. 
Results: Chitosan nanoparticles were effective in inducing artemisinin production at 15 
mg/L after 8 h, and 5 and 10 mg/L after 72 h of elicitation, in which all the ADS, CYP, 
CPR, DBR2 and ALDH genes were upregulated except SQS.  
Conclusion: The treatment of 5 mg/L after 72 h, when cells entered the stationary and 
then death phases, is recommended because it seems chitosan nanoparticles require 
more time to up-regulate the ADS, CYP and ALDH genes and thereby probably enhance 
the artemisinin content. The results suggest that chitosan nanoparticles can be used as a 
novel effective elicitor for artemisinin production.  
Keywords: Artemisinin, chitosan, gene expression, nano elicitor. 
 

1. Introduction  

Today, medicinal plants have a pivotal 
role in the cornerstone of human disease 
prevention [1-3]. The growing body of 
evidence suggests that medicinal plants 
contain various chemical metabolites 
that exhibit potential health benefits in a 
dose-dependent manner [4-6]. Artemisia 
annua L., as a medical plant, has drawn 
researchers' attention because of its 
beneficial effects for clinical purposes. It 
has a specific metabolite called 

artemisinin, a sesquiterpene lactone with 
an unusual endoperoxide structure [7]. 

The accumulated body of evidence 
speculates that this metabolite displays 
different functionalities from 
antibacterial to anticancer activities [8]. 
Various genes are involved in the 
biosynthesis of artemisinin. The most 
important ones are DBR2, SQS, CYP, ADS, 
CPR and ALDH genes and studies 
suggested that the overexpression of 
these genes could increase the total level 
of artemisinin within A. annua L. Each 
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gene is responsible for production of a 
specific intermediate that later will be 
converted into another biochemical 
metabolite to produce artemisinin 
constituents [9].  

Biochemical investigations have 
unraveled that naturally occurring 
artemisinin has been produced in lower 
amounts among those plants that have a 
route for biosynthesis of this secondary 
metabolite; therefore, many efforts have 
been conducted to increase the overall 
production of artemisinin either through 
genetic engineering and plant tissue 
culture or inducing its biosynthesis 
routes by chemical stimulants [10, 11]. 
Still, the applied method to elevate the 
total production of artemisinin could not 
produce large-scale quantity of this 
product, thus further investigations 
should be performed to boost the 
production of artemisinin within target 
plants.   

Studies have shown that the 
application of nanoparticles to induce the 
production of valuable secondary 
metabolites is a trustworthy strategy to 
obtain bulk production of these 
metabolites. Using coupled policies such 
as co-utilization of plant cell culture in 
combination with nanoparticles can 
outstandingly increase the level of 
secondary metabolites production within 
medicinal plants [12]. 

A variety of nanoparticles have been 
used as complementary elicitors within 
plant tissue culture medium by which 
researchers could change the way of gene 
expression and metabolic profile among 
target plants. According to the review of 
the literature, using metal nanoparticles 
such as AgNPs and plant tissue culture 
could increase the level of artemisinin 
production [12, 13]. Combinatory 
treatments such as the use of 
nanoparticles and biochemical agents 
like methyl jasmonate have also showed 
effective functionality when they are 

used under plant cell cultures to increase 
artemisinin production [14].   

The application of chitosan 
nanoparticles to improve metabolic 
profile of plants has been investigated 
and the results have suggested that these 
particles could improve the secretion or 
biosynthesis of valuable metabolites. 
Chitosan is a natural sugar and it is highly 
bioactive, exhibiting a variety of 
biological functionalities from 
antibacterial properties to use as cell-
compatible drug carrier [15, 16]. In the 
case of artemisinin, there is no report on 
the effects of chitosan particles to 
increase the level of the above-
mentioned metabolite; therefore, using 
chitosan nanoparticles within plant 
tissue culture medium might induce the 
production of artemisinin. Considering 
what stated above, this study addressed 
the effect of chitosan nanoparticles on 
artemisinin biosynthetic pathway genes 
to find its functionality for elevation of 
artemisinin production. 

2. Material and methods 

2.1. Plant material  

The seeds of Artemisia annua were 
obtained from the Forest, Rangeland and 
Watershed Organizations of Iran. Seeds 
were surface sterilized with 96% ethanol 
for 30 seconds and 0.1% HgCl2 for 5 min. 
Then, they were rinsed 3 times by 
autoclaved distilled water. Sterilized 
seeds were cultured in the basal MS 
medium [17]. Calli were developed from 
chopped leaves of aseptically germinated 
seedlings and maintained on the MS 
medium supplemented with 0.5 mg/L 
NAA, 0.5 mg/L BAP and 30 g/L sucrose. 
All experiments were conducted with 3 
replicates. Plates were kept in a growth 
chamber with a 16/8 h light/dark 
photoperiod and the temperature was set 
at 25 ± 2 °C. The explants were sub-
cultured every 3 weeks. 
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2.2. Establishment of cell suspension 
culture and treatments with nano 
elicitor 

The white, fresh, and friable calli 
obtained from the MS medium containing 
30 g/L sucrose, 0.5 mg/L NAA, 0.5 mg/L 
BAP and 8 g/L agarose, were used (2 g of 
FW) for establishing suspension culture. 
The 500 ml Erlenmeyer flasks containing 
100 mL of the liquid MS medium, 
containing either 0.5 mg/L NAA + 0.5 
mg/L BAP or 0.1 mg/L NAA + 0.1 mg/L 
Kin or 0.5 mg/L NAA+0.05 mg/L Kin with 
30 g/L sucrose or glucose placed on a 
rotary shaker at 25±2 °C and a 16/8 h 
light/dark photoperiod (Sahand Azar Co, 
Iran) with 120 rpm. They were sub-
cultured every three weeks. Growth was 
measured during a month in order to 
select the best medium. The nano 
chitosan solution at 5, 10 and 15 mg/L 
concentrations were added to the 14-
day-old cell suspensions cultured in 100 
ml Erlenmeyer flasks containing 20 ml of 
the liquid MS medium and 5 ml of fresh 
cell suspension. Nano elicitor solution 
was ultra-sonicated for 15 min and pH 
was adjusted to 5.8. Samples were taken 
after 8, 24, 48 and 72 h, then filtered and 
kept at -80 °C. Control samples were 14-
day-old suspension cells without any 
treatment. All samples were in three 
replicates [18]. Chitosan nanoparticles 
colloidal solution was purchased from 
NanoZino Company (Iran). Its purity was 
99.9%. 

2.3. RNA extraction and cDNA 
synthesis 

The cell samples treated by elicitors 
were harvested at 8, 24, 48 and 72 h after 
chitosan nanoparticles treatments, 
immediately frozen in liquid nitrogen 
and stored at -80 °C. Total RNA was 
extracted by using Trizol (Sigma, 
Germany) according to the 
manufacturer’s recommendations. RNA 
samples (2 µg) were treated with DNase I 

(Fermentas, Germany) to eliminate DNA 
impurities. The concentration and purity 
of RNA were monitored by measuring the 
ratio of A260/A280 and A260/A230 (Thermo 
nanodrop 1000, USA). The quality of RNA 
was assessed by separation on 1.2% 
formaldehyde agarose gels. cDNA was 
prepared with M-MuLV reverse 
transcriptase (Vivantis, Malaysia) using 1 
µg DNase-treated total RNA as the 
template in a 20 µL reaction volume with 
oligo (dT) primer (Vivantis, Malaysia). 
Twenty-fold dilution of cDNA samples 
were used as templates for the 
quantitative real-time PCR [19]. 

2.4. Primer design and quantitative 
real-time PCR 

In order to examine the expression of 
six genes involved in artemisinin 
biosynthesis (DBR2, SQS, CYP, ADS, CPR 
and ALDH), seven primer pairs, including 
one pair for the house keeping gene 
(ACT) designed by Primer 3 online 
software (www.embnet.sk/cgi-
bin/primer3) and synthesized as listed in 
Table 1. In this study, the utilized primer 
pairs for Artemisia genes were designed 
based upon the available gene sequences 
in the NCBI database. For each primer 
set, the complete coding sequence (CDS) 
of target genes was selected as input for 
the primer design procedure. Using the 
primer-Blast tool in NCBI, the similarity 
of primers/target sequences was 
checked and sent for further 
experimental synthesis. The specificity of 
primers was checked by standard PCR 
and electrophoresis on a 0.8% agarose 
gel. Quantitative real-time PCR reactions 
were performed using SYBR Green on an 
iQ5 System (BioRad, USA). The SYBR 
Green PCR Master Mix (SYBR Biopars, 
GUASNR, Iran) was used with a final 
concentration of 1 × SYBR Green PCR 
Master Mix, in a total volume of 20 µL, 
containing 1 µL of 10 pico mole of each 
primer and 12.5 ng of cDNA. Quantitative 
real-time PCR cycles were set as follows: 
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94 °C for 30 s, 94 °C for 10 s, 60 °C for 10 
s, 72 °C for 20 s (40 cycles). The 
temperature increased from 55 °C to 94 
°C with 0.5 °C/s ramping. Gene 
expression was calculated by Pfaffl 
formula [20]. The relative expression was 
normalized against Actin and calculated 

using the untreated samples as a 
calibrator. Each sample was evaluated in 
three technical and biological 
replications. The ratio between the target 
and housekeeping genes was analyzed by 
REST software [21]. Melting curve was 
used to check primer specification. 

Table 1. Nucleotide seq uence of primers used in quantitative real-time PCR 

Gene 
name 

Primer 
Name 

Primer sequence F/R [5'-3'] 
Primer 
Tm [°C] 

% 
GC 

Amplicon 
length [bp] 

SQS AF302464 
F- TTTGAAAGCAGTATTGAAACAC 

R- CAGACAGCATCACGAAGC 
51.3 31.8 

192 
52.8 55.6 

DBR2 EU704257 
F- CATCAACAAGCAAGCCCATTTC 
R- GCGATAGTCTTCAACCACCTC 

56.5 45.5 
125 

55.7 52.4 

CYP DQ315671.1 
F- TTGGAGCTGGGAGAAGGATG 
R- CGACGTGCATTCGTGACATA 

62.61 55 
273 

61.71 50 

ADS AF138959 
F- GTCGAATGGGCTGTCTCTGC 
R-CCATCAATAACGGCCTTGGA 

63.28 60 
256 

63 50 

CPR EF197890 
F- TTCTTCGGATGCAGGAATCG 

R- GCTCCGCCTTTGAGGAGTCTA 
63.48 50 

292 
63.13 57.1 

ALDH FJ809789 
F- GGTGGTAAGCCATTTGGGAAG 
R- CATCCCGGTCGAGTGCTAAA 

62.78 52.3 
280 

63.37 55 

ACT U36376 
F- AGTGCTCCTGGTTAGTTGTC 

R- CTTGTTGCCTCGTAATCTTCG 
54.1 50 

166 
54.7 47.6 

 

3. Results  

3.1. Cell suspension culture 

The A. annua seeds were germinated 
after 2 weeks. The chopped fresh leaves 
of two-month-old in vitro grown plants 
were used for callus induction. Callus 
induction initiated after seven days. The 
white friable calli was obtained from the 
treatment containing 0.5 mg/L NAA, 0.5 
mg/L BAP and 30 g/L sucrose were used 
(2 g FW) to establish the suspension 
culture. Medium containing 30 g/L 
glucose induced brown compact calli 
with a slow growth rate (Fig. 1). Among 
different treatments analyzed for 
obtaining suspension culture, cells had 

the fast growth in the medium containing 
0.5 mg/L NAA and 0.5 mg/L BAP with 
glucose (Figure 2). The medium 
containing sucrose also induced suitable 
suspension culture. However, the 
medium containing glucose (0.5 mg/L 
NAA, 0.5 mg/L BAP) was selected to 
proceed the elicitation tests. According to 
the cell growth curve (Figure 3) cells 
were in the exponential phase during 
13th and 15th day and the maximum 
biomass obtained was 23.5 mg/L. 
Therefore, the 14th day was chosen for 
treating the cells with the elicitor when 
the cell number and viability were in 
their maximum levels. 
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Figure 1. (a) White and friable calli obtained from 0.5 mg/L NAA+ 0.5 mg/l BAP with 
sucrose (b) brown calli with low growth rate obtained from 0.5 mg/L NAA+ 0.5 mg/L 

BAP with glucose 

 

Figure 2. Different combinations of plant growth regulators and carbon resource to 
obtain the optimum treatment for suspension culture of A. annua. 

 

Figure 3. Time course of cell growth of suspension cultures of A. annu sub-cultured in 
the MS medium containing 0.5 mg/L NAA+ 05 mg/L BAP and glucose during 30 days of 

growth. The values are the means of three independent experiments ±SD 
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3.2. Expression of artemisinin 
biosynthetic genes 

Expression of artemisinin biosynthetic 
pathway genes including ADS, ALDH, 
DBR2, CYP, CPR and SQS was measured in 
24 treatments and the control sample in 
three technical and biological was 
replicated by the quantitative real-time 
PCR technique. 

3.2.1. CYP and CPR genes expression 

The only decrease in CYP gene was in 
10 mg/L of nano chitosan at 24 h after 
treatment, and the maximum expression 
was observed at 5 mg/L in 72 h. No 

decrease was observed in CPR gene 
expression at 72 h after nano chitosan 
treatment. The CPR gene expression 
increased in all treatments except in 5 
mg/L at 24 h, 10 mg/L at 24 h and 5 and 
10 mg/L at 48 h after treatment. We can 
postulate that 5, 10 and 15 mg/L of 
chitosan nanoparticles at 8 and 10 mg/L 
after 72 h can increase the artemisinin 
production because DBR2 and ALDH were 
upregulated as well, and SQS was down-
regulated (Figure 4 and 5). The 
maximum increase of CPR gene 
expression was observed using 5 mg/L, 8 
h after treatment.  

 

Figure 4. The expression of SQS (a), ADS (b), CYP (c), CPR (d), DBR2 (e) and ALDH (f) in 
quantitative real-time PCR analysis at different treatments of nano chitosan. 



Ghassemi et al.                                                                               Int. J. Adv. Biol. Biomed. Res. 2021, 9(2):190-203 
 

196 | P a g e  
 

 

Figure 5. The expression of all genes involved in artemisinin production pathway in 
different nano chitosan treatments 

3.2.2. ADS and SQS genes expression 

ADS gene was upregulated in all 
chitosan nanoparticles treatments except 
at 10 mg/L after 24 h, and the maximum 
expression was obtained using 5 mg/L at 
72 h and then with 15 mg/L at 8 h. In 
different treatments of chitosan 
nanoparticles, SQS gene was significantly 
upregulated only using 15 mg/L after 8 h 
and 5 mg/L after 24 or 72 h (Fig. 4a). It 
means that chitosan nanoparticles in low 
concentrations (5 and 10 mg/L), when 
cells do not enter the growth phase, 
could enhance the artemisinin content 
because SQS, as an inhibitor of 
Artemisinin production, was dramatically 
down-regulated (Fig. 3 and 4a). 

3.2.3. DBR2 and ALDH genes 
expression 

The maximum up-regulation of DBR2 
was observed in 5 mg/L of nano chitosan 
at 72 h after treatment, and declined 
after 48 h. The expression of ALDH 
remarkably increased in 5 mg/L at 72 h 
after treatment. Except this treatment, 

ALDH gene could slightly be up regulated 
by various nano chitosan treatments (Fig. 
4f). The significant effect of chitosan 
nanoparticles on stimulating ALDH 
expression was observed in the high 
concentration (15 mg/L) at early stage (8 
hours) and also in the low concentration 
(5 mg/L) at the late stage of cell viability 
(72 h after the treatment) (Fig. 4f).  

4. Discussion 

Although the white and well growing 
suspension cells were obtained from the 
medium containing sucrose, a proper 
treatment containing glucose was opt for 
the further elicitation test because, 
according to the Ali et al.’s (2017) report, 
A. anuua cells grown in the medium 
containing glucose produced more 
artemisinin compared with the cells 
grown in the medium containing 
fructose, and fructose was recognized as 
the determining factor to inhibit 
artemisinin production due to the 
presence of sucrose [22]. Moreover, 
Wang and Weathers (2007) also 
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reported that artemisinin production 
was two folds higher when glucose was 
added to the medium rather than sucrose 
[23]. Therefore, the medium fortified 
with 0.5 mg/L NAA, 0.5 mg/L BAP and 
glucose was the best option to proceed 
for the elicitation of artemisinin 
production.  

The only decrease in CYP gene was in 
10 mg/L of nano chitosan at 24 h after 
treatment while no decrease was 
observed in CPR gene expression at 72 h 
after nano chitosan treatment. It was 
predictable because CPR and CYP 
participate in different parts of 
artemisinin biosynthetic pathway. 
Cytochrome P450 monooxygenase (CYP) 
is a multifunctional sesquiterpene 
oxidase with a key role in the 
biosynthesis of artemisinin. In three 
steps, it converts amorpha-4,11-diene to 
artemisinic acid via artemisinic alcohol 
and artemisinic aldehyde middle 
metabolites [24]. Cytochrome P450 
reductase (CPR) was identified as a redox 
partner of CYP71AV1 that helps 
CYP71AV1 to catalyze the conversion of 
amorpha-4,11- diene to more oxygenated 
products in vivo [25]. The CPR gene 
expression increased in all treatments 
except in 5 mg/L at 24 h, 10 mg/L at 24 h 
and 5 and 10 mg/L at 48 h after 
treatment.  

Previous studies demonstrated that 
co-overexpressing genes CYP71AV1 and 
CPR could increase artemisinin content in 
A. annua [26], accordingly, the results 
here suggested that 5, 10 and 15 mg/L of 
chitosan nanoparticles at 8 and 10 mg/L 
after 72 h could increase the artemisinin 
production because DBR2 and ALDH were 
upregulated as well, and SQS was down-
regulated (Fig. 4 and 5). The maximum 
increase of CPR gene expression was 
observed using 5 mg/L, 8 h after 
treatment. It has been reported that 
expression of CPR was also promoted 
slightly by chitosan elicitation in the leaf 
of A. annua [27]. ADS gene was not 

upregulated only after 24 h (10 mg/L), 
and the maximum expression was 
detected at 72 h (5 mg/L) and 8 h (15 
mg/L), respectively. Lei et al. (2011) 
reported that using chitosan the 
expression of ADS as the first committed 
gene of artemisinin biosynthesis was 
transiently and significantly induced at 2 
h and returned to its initial level at 8 h in 
the leaf of A. annua plant [28].  

Our results showed that the ADS gene 
was dramatically up-regulated at higher 
concentrations of nano chitosan (15 
mg/L) when cells had not yet entered the 
stationary phase (8 h after treatment). 
On the other hand, ADS also upregulated 
at the low concentration of chitosan 
nanoparticles (5 mg/L) when cells had 
entered the death phase (72 h after 
treatment) (Fig. 3 and 4b). Therefore, it 
can be inferred that ADS was mostly 
affected by chitosan nanoparticles 
instantly after the chitosan treatment or 
when cells entered the death phase (72 
hours).  

Squalene synthase (SQS) is an enzyme 
which catalyzes the condensation of two 
FDP molecules to form squalene, as a 
main precursor for sterol synthesis. SQS 
is the key enzyme catalyzing the first step 
of the sterol biosynthetic pathway, which 
is in competition with artemisinin 
biosynthetic pathway [29]. We found that 
SQS was significantly upregulated only 
using 15 mg/L (after 8 h) and 5 mg/L 
(after 24 and 72 h) (Fig. 4a). It means 
that chitosan nanoparticles in low 
concentrations (5 and 10 mg/L) can be 
used as an inhibitor of SQS before cells 
enter the growth phase, thereby it could 
enhance the artemisinin content (Fig. 3 
and 4a). The inhibition of sesquiterpene 
synthesis resulted in enhanced sterol 
synthesis.  

In A. annua, when SQS was inhibited 
with miconazole, artemisinin yield 
increased [30]. Moreover, studies using 
either an antisense or interference 
strategy in A. annua [31], or promoter 
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replacement in Saccharomyces cerevisiae 
[32], showed that when SQS was 
inhibited, both artemisinin content and 
transcripts of genes involved in the 
artemisinin biosynthetic pathway 
increased. Salehi et al. (2018) further 
showed that down-regulation of SQS 
resulted in a preferential up-regulation of 
ADS instead of other competing 
sesquiterpene cyclase [33]. However, the 
quantitative real-time PCR analysis of 
artemisinin biosynthetic pathway genes 
could not support this idea in all 
treatments of chitosan nanoparticles 
(Fig. 4a, b and 5), suggesting that 
chitosan nanoparticles might behave 
differently from other non-nano elicitors 
because of their molecular structure. 

The maximum up-regulation of DBR2 
was observed in 5 mg/L of nano chitosan 
at 72 h. Lei et al. (2011) reported that 
DBR2 expression began to increase at 4 h 
and declined by 24 h during the foliar 
application of chitosan [28]. Here, DBR2 
declined after 48 h of treatments with 
chitosan nanoparticles. Although the 
expression of ALDH gene increased by all 
nano chitosan treatments (except 10 
mg/L at 72 h), these increases were not 
significant (Fig. 4f). The results showed 
that chitosan nanoparticles did not 
significantly influence the expression of 
ALDH at mRNA level. The expression of 
ALDH remarkably increased in 5 mg/L at 
72 h after treatment. At this treatment, 
the ADS and CYP were also highly up-
regulated, but DBR2 gene expression did 
not increase with the same amount 
(Figure 5).  

The significant effect of chitosan 
nanoparticles on stimulating ALDH 
expression was observed in the high 
concentration (15 mg/L) at early stage (8 
hours) and in the low concentration (5 
mg/L) at the late stage of cell viability 
(72 h after the treatment) (Fig. 4f). It 
seems that chitosan nanoparticles could 
be potentially used as a suitable elicitor 
for enhancing artemisinin production at 

5 and 10 mg/L after 8h and 10 mg/L 
after 72 h of treatments with chitosan 
nanoparticles because important genes 
involving in artemisinin production such 
as ADS, CYP, CPR and ALDH and DBR2, 
were highly upregulated and SQS, as the 
competitor of ADS gene and artemisinin 
production, was down-regulated (Fig. 5).  

In this research, the results showed 
that different concentrations of chitosan 
nanoparticles had a low impact on ADS, 
CYP, CPR, ALDH and DBR2 when cells 
were in the exponential growth phase 
(24 and 48 hours after treatment) (Fig. 3 
and 5). According to the cell growth 
curve (Figure 3), cells entered the death 
phase at 17th day. In such a condition, 
the pivotal genes were up-regulated 
when a low concentration of chitosan 
nanoparticles was utilized (5 mg/L after 
72 h), so it can be seen that 5 mg/L of 
chitosan nanoparticles could be effective 
on artemisinin enhancement when cells 
entered the stationary and then death 
phases. Additionally, 15 mg/L chitosan 
nanoparticles had no significant elevated 
effect on gene expression except for CYP 
gene when cells entered the death phase 
(at 72 hours). The CYP gene is involved in 
three reactions in artemisinin 
biosynthetic pathway [34]; therefore, its 
higher expression might increase the 
level of artemisinin production in vitro. 
Amorpha-4,11- diene is gradually 
oxidized to artemisinic alcohol, 
artemisinic aldehyde, and artemisinic 
acid through cytochrome P450 enzyme 
CYP71AV1 (CYP) [25]. Our results 
displayed that the exposure of prepared 
medium to chitosan nanoparticles could 
enhance the expression of this gene as its 
functional role highlighted in the 
literature to trigger the production of 
artemisinin.  

In this respect, Yin et al. (2012) 
studied the effect of chitosan 
oligosaccharide and salicylic acid on the 
leaf of A. annua by monitoring the genes 
involved in artemisinin biosynthetic 
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pathway. They reported that the 
expression of TTG1, as a transcription 
factor in this signaling pathway, was 
upregulated by chitosan treatment 
revealing the possibility of a positive 
effect of chitosan on glandular trichome 
formation. In addition, their outcomes 
also suggested that chitosan significantly 
promoted the expression of some 
artemisinin synthesis related genes (ADS, 
CPR), 24 and 48 h after chitosan 
application through which slightly 
induced the higher artemisinin 
concentration in leaves [35]. They 
suggested that elicitors, however, were 
not a critical method for enhancing 
artemisinin or these compounds might 
need extra time (more than 48 h) for 
affecting artemisinin content [35].  

Lei et al. (2011) did not investigate the 
effect of chitosan application on the gene 
expression after 48 h while herein, we 
showed the effect of chitosan 
nanoparticles up to 72 h and differential 
gene expression was observed for 
studied genes. The results unraveled that 
the highest up-regulation of important 
gene including ADS, CYP and ALDH were 
at 72 h after treatment (at 5 and 10 
mg/L) (Fig. 5). Therefore, it can be 
concluded that chitosan nanoparticles 
need more time to promote artemisinin 
content [28]. Putalun et al. (2007) 
reported that artemisinin production in 
hairy roots increased 6-fold to 1.84 
mg/mg dry wt over 6 days by adding 150 
mg/L chitosan [36]. In Jiao et al.’s (2018) 
study after chitosan treatment , the total 
flavonoids were increased 7.08-fold Isatis 
tinctoria hairy root culture [37]. It was 
demonstrated that the increase in 
secondary metabolite production after 
chitosan treatments was related to 
significant changes in the expression of 
the  PAL enzymes pathway [38].  Lei et al. 
(2011) showed the leaf artemisinin 
content was enhanced by treating the 
leaf of A. annua with 100 mg/L chitosan. 
According to their results, artemisinic 

acid and artemisinin were also increased 
72 % and 53%, respectively. In addition, 
their results demonstrated that H2O2 and 
O-

2 levels were 1.4 and 3-fold higher than 
those of the control group; therefore, 
they might lead to convert the 
dihydroartemisinic acid to artemisinin. 
Studies also reported that there was no 
negative effect on plant growth after the 
application of chitosan treatment [28].  

Interestingly, in a study by Putalun et 
al. (2007) on hairy root cultures of A. 
annua, artemisinin production was 
promoted 6-fold higher (1.8 µg/mg DW) 
compared with the control group by 
application of 150 mg/L chitosan 
(polymer of COS) [36]. In contrast, Baldi 
et al. (2008) reported that chitosan had 
no effect on artemisinin accumulation in 
A. annua suspension cultures [39]. 
Positive effects of chitosan treatment on 
artemisinin production and even other 
metabolites have been reported in 
previous studies, but there are no reports 
on the chitosan nanoparticles effect as 
the elicitor. The effect of other 
nanoparticles has been approved, and 
their positive effect as elicitors such as 
AgNPs, CuSO4 and cobalt nanoparticles 
were reported [18, 40].  

By and large, medicinal plants are 
available pools of natural products with 
beneficial health benefits and finding a 
way to enhance the production of these 
metabolites can improve the knowledge 
of researchers to find the most important 
secondary metabolites for human disease 
prevention [41]. Over the past decades, 
many chronic diseases have affected 
world nations, caused millions of deaths 
yearly and modern medicine could not 
find an ultimate medicine for controlling 
of these diseases [42]. Therefore, 
production of beneficial secondary 
metabolites using the application of 
biochemical agents, nanoparticles and 
natural stimulants could decrease the 
cost of drug design for developing 
effective drugs against human diseases. 
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Since a holistic view on the interaction of 
nanoparticles and plant metabolic 
pathways, soil rhizobia and human body 
has not been reported [43, 44], further 
studies on artemisinin production using 
natural and environmentally friendly 
nanoparticles can pave the way for 
further research to entirely unravel the 
effectiveness of these compounds for 
enhancing plant metabolites production. 

5. Concluding remarks 

In conclusion, our results showed that 
different concentration of chitosan 
nanoparticles could trigger the 
production of artemisinin metabolite. In 
a time-dependent manner, these 
particles affected the gene expression 
profile of target explants, leading to an 
elevated production of artemisinin. 
Therefore, these outcomes suggested 
that using natural nanoparticles is an 
effective strategy to increase the 
expression of pivotal genes that are 
involved in the production of artemisinin 
metabolite. Further studies should be 
conducted on these particles to unravel 
their beneficial effects for large-scale 
production of artemisinin for medicinal 
and industrial applications.   
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