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Abstract 

Keeping the water table at a favorable level is quite significant for a sustainable management of groundwater 
plans. Various management measures need to know the spatial and temporal behavior of groundwater. Therefore, 
the measurement of groundwater levels are generally carried out at spatially random locations in the field; 
whereas, most of the groundwater models requires these measurement at a pre-specified grid. Geostatistical 
techniques could produce an accurate map of groundwater level. Naishaboor plain with 4190 sq km was selected 
due to presence of over 48 observation wells, mostly with more than 20 years of record. A universal kriging and co-
kriging - with level of surface as auxiliary variable - estimator has been used to model groundwater level for three 
kind of climate condition (wet, normal and dry) and three levels (maximum, average and minimum). The result 
showed the Gaussian model selected as the best variogram. Furthermore, the RMSE and MRE indicated that 
kriging method was more accurate than co-kriging in mapping the groundwater level; although, there was not 
distinct difference. 
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1. Introduction 

Keeping the water table at a favorable level is quite significant for a sustainable management of groundwater 
plans (Gundogdu and Guney, 2007). Various management measures need to know the spatial and temporal 
behavior of groundwater (Kumar and Remadevi, 2006). In order to observe water table continuously, groundwater 
observation wells are used and monthly measurements are normally recorded (Coram et al., 2001). Observed 
groundwater levels serve as one of the main input data in studies related to groundwater simulation for various 
purposes as required in water balance studies, estimation of groundwater recharge potential, in the design of 
drainage structures etc. However, the measurement of groundwater levels are generally carried out at spatially 
random locations in the field, whereas, most of the groundwater models requires these measurement at a pre-
specified grid. Some interpolation method is generally employed to get these values at grid nodes. The accuracy 
with which this interpolation can be carried out affects the accuracy of the model output. 

Kriging is a technique of making optimal, unbiased estimates of regionalized variables at unsampled locations 
using the structural properties of the semivariogram and the initial set of data values (David, 1977; Gundogdu and 
Guney, 2007). Basic concepts of the kriging technique and its application to natural phenomenon have been 
reviewed by the ASCE Task Committee (1990a, b). Kriging has been increasingly used in many branches, such as soil 
science (Burgess and Webster, 1980; Vieria et al., 1981; Berndtsson and Chen, 1994; White et al., 1997; Bardossy 
and Lehmann, 1998; Coram et al., 2001); hydrology (Creutin and Obled, 1982; Bastin et al., 1984; Storm et al., 
1988; Ahmed and de Marsily, 1989; Germann and Joss, 2001; Araghinejad and Burn, 2005). Kriging of groundwater 
levels was carried out by (Delhomme, 1978; Volpi and Gambolati, 1978; Chirlin and Dagan, 1980; Aboufirassi and 
Marino, 1983; Virdee and Kottegoda, 1984; Venue and Pickens, 1992; Kumar, 1996; Kumar and Ahmed, 2003; 
Kumar and Remadevi, 2006; Gundogdu and Guney, 2007; Ahmadi and Sedghamiz, 2008). Since water level is time 
varying and is monitored using the same network of observation wells at desired intervals, estimating it for all the 
time periods following all the steps of geostatistical estimation becomes cumbersome. However, to account for 
the temporal variation in water level, it is possible to group water level for certain time periods having similar 
behavior and analyze them geostatistically for spatial variability (Kumar and Ahmed, 2003).  

With regarding to the literature review, it is obvious that SPI index have not been used in earlier papers. 
Consequently, in the present study, the collected monthly water-level data from Naishaboor watershed in the 
eastern north of Iran have been analyzed geostatistically. Hence, at first, the climate condition of study area was 
investigated by standardized precipitation index (SPI) and the drought, normal and wet period were determined. 
Then, in each period, a year was selected in order to assessment the ability of different interpolation methods for 
diverse climate condition in the Neyshabour watershed. 

2. Materials and methods 

2.1. Study area and data description  

Naishaboor plain is a part of the Kalshoor watershed in the south Binalood mountain and northeastern 
central desert of Iran (Fig. 1). Geographically, the study area is located between 35 ْ◌ 40 َ◌ N to 36 ْ◌ 39 َ◌ N latitude 
and 58 ْ◌ 17 َ◌ E to 59 ْ◌ 30 َ◌ E longitude with its hydrological boundaries as Yengche watershed in the North, 
Mashhad and Sang Bast watershed in the East, Joldeh Rokh watershed in the South, and Sabzevar watershed in the 
West (Velayati and Tavassloi, 1991). The total geographical area is 7350 sq km that comprises of 3160 sq km 
mountain and about 4190 sq km plain. The maximum and minimum elevation is located in Binalood mountain with 
3300 m and outlet plain (Hosein Abad Jangal) with 1050 m above sea level, respectively (Velayati and Tavassloi, 
1991). The climate is semi-arid to arid. The average annual precipitation is 234 mm but varies considerably from 
one year to another. Mean monthly temperature in Bar-Aria station (mountainous station) and Mohammad Abad - 
Fedisheh (plain station) is 13 ْ◌ C and 13.8 ْ◌ C, respectively. Estimated potential evapotranspiration exceeds 2335 
mm yr-1 (Water Organization, 1998). Naishaboor plain has faced a severe problem of depletion groundwater 
resources that mainly used in agriculture. For this reason, it has announced as forbidden plain by Ministry of 
Energy since 1986 (Hoseini et al., 2005).  
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  Fig. 1. Location of the study area in north eastern of Iran and observation wells in the plain. 

At first, the effect of the climate condition on the water table was investigated by SPI index. The Standardized 
Precipitation Index (SPI) is an index based on the probability of rainfall for any time scale and can assist in assessing 
the severity of drought. The SPI can be calculated at various time scales which reflect the impact of the drought on 
the availability of groundwater. This index calculated by the following equation: 

 
 

 
Where δi is standard deviation of the ith station data, Xik is precipitation's amount in the ith station and kth 

datum and x ̄ is average of precipitation's amount that this index was calculated by the SPI-SL-6.0 software. The 
monthly data of groundwater table of 48 observation wells from 1988 to 2004 were used for Geostatistical 
analyses. Fig. 1 shows the location of observation wells in the plain.  

2.2. Theory 

The main tool in geostatistics is the semivariogram, which expresses the spatial dependence between 
neighboring observations. The semivariogram quantifies the relationship between the semivariance and the 
distance between sampling pairs by the following Equation (Isaaks and Srivastava, 1989; Kitanidis, 1997): 

У(h) = 1/2n∑n
i=1(Z(xi + h) - Z(xi))

2    (2) 

Where У(h) is the estimated value of the semivariance for lag(h), n is the number of sample pairs separated 
by h, Z(xi+h) and Z(xi) are the values of variable Z at xi+h and xi ,respectively, and h is the distance vector between 
sample points. All pairs of points separated by distance h (lag h) were used to calculate the experimental 
semivariogram. Spherical, exponential and guassian Models were fitted to the empirical semivariograms. Model 
selection for semivariograms was done on the bases of determination cofficient (R2), visual fitting and Residual 
Sum of Squares (RSS) (Cambardella et al., 1994). Geostatistical software (GS+ Ver.7.0, 2005; Gamma Design 
software) was used to conduct semivariogram and special structure analysis for variables (groundwater level).  

2.3. Interpolation methods 

2.3.1. Universal kriging 

It is obvious that there was a trend in groundwater flow. For this reason and considering trend in kriging 
method, the Universal kriging method is selected. Evidently, this method requires knowledge of the structure of 

SPI = Xik- x ̄ (1) 
δi 
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the trend (which covariates, quadratic terms, interactions?) and of the model-type and parameters of the 
covariance function or variogram of the residuals. Following model is used for calculating the universal kriging:  

Z(s) = ∑m
j=0 βj xj(s) + ε(s)    (3) 

Where Z(s) is the target environmental variable, s = (s1 s2)′ is a two-dimensional spatial coordinate, xj(s) are 
covariates (x0(s) = 1 for all s), βj are regression coefficients, and ε(s) is a normally distributed residual with zero-
mean and constant variance c(0). The residual ε is possibly spatially autocorrelated, as quantified through an 
autocovariance function or variograms. In what follows it will be convenient to use matrix notation, so that Eq. (3) 
may be rewritten as:  

Z(s) = X'(s)β + ε(s)    (4)  

Where X and β are column vectors of the m + 1 covariates and m + 1 regression coefficients, respectively. The 
universal kriging prediction at an unobserved location s0 from n observations z(si) is given by: 

Ẑ(s0) = (c0 + X(X'C-1X)-1(X0 - X'C-1c0))' C-1Z     (5) 

Where X is the n × (m + 1) matrix of covariates at the observation locations, X0 is the vector of covariates at 
the prediction location, C is the n × n variance–covariance matrix of the n residuals, c0 is the vector of covariances 
between the residuals at the observation and prediction locations, and where Z is the vector of observations z (si). 
C and c0 are derived from the variogram of ε. 

The universal prediction error variance (universal kriging variance) at s0 is given by (Christensen, 1990): 

σ2(s0) = c(0) - c'0C-1c0 + (X0 - X'C-1c0)' (x'c-1x)-1(x0 - x'c-1c0)    (6) 

The universal kriging variance incorporates both the prediction error variance of the residual (first two terms 
on the right-hand side of Eq. (6)), and the estimation error variance of the trend (third term on the right-hand side 
of Eq. (6)). By minimizing the spatial average (or sum) of the universal kriging variance at points, one automatically 
obtains the right balance between optimization of the sample pattern in geographic and feature space. 

2.3.2. Cokriging 

The correlation between different variables is the basis of the cokriging estimator. In this method, by means 
of an auxiliary variable (level of surface), the principal variable is estimated because the auxiliary variable can be 
easily measured and there is an existing correlation between auxiliary and principal variables. Supposing Z1 and Z2 
are the auxiliary and principal variables, respectively, the following can be written (Isaaks and Srivastava, 1989): 

Ẑ(x0) = ∑n
i=1λ1iZ1(xi) + ∑m

j=1λ2jZ2(xj)      (7) 

Where Ẑ(χ0) is the estimated principal variable, λ1i and λ2j are the weighting coefficient of auxiliary and 
principal variables, respectively. m and n are the numbers of primary and auxiliary samples respectively. For 
estimating unknown values, the weighting coefficients will be obtained from minimizing the variance of estimation 
similar to punctual kriging. More details are given in references (Isaaks and Srivastava, 1989; Kitanidis, 1997). As 
described above, the weights are selected to minimize the estimated error variance (xi). Weights for the primary 
variable λ1i are forced to ∑n

i=1λ1i = 1, while for secondary variables ∑m
j=1λ2j = 0. 

2.4. Performance criteria 

To evaluate the performance of interpolation methods is used the cross validation method. In this procedure, 
an observed value is temporarily discarded from the sample data set, and one estimated value at that location is 
determined using the other sample points. This results in a series of observed and estimated values that can be 
used to assess the validity of the interpolation method. In this study, estimated and observed values were 
compared using root mean square error (RMSE), mean absolute error (MAE) and determination coefficient (R2). 

RMSE = √1/n∑n
i=1 (Z(xi) - Ẑ(xi))

2      (8) 

Where n the number of observations is, Z(xi) is the observed value of Z at location (xi), Ẑ(xi) is the estimated 
value at the same location and i is the index for the number of data. 

MRE = 1/n∑n
i=1 [I Z(xi) - Ẑ(xi) I]           (9) 

        Z(xi) 
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The smallest MRE is indicative of the most accurate global estimates. 

3. Results and discussion 

As mentioned earlier, the SPI index was used to determine the wet, normal and dry periods. According to this 
index, 1991-1992, 1996-1997 and 1999-2000 were categorized as normal, wet and severe drought period 
respectively. It is obvious that three determined climate condition were critical situation. Therefore, if the kriging 
estimator was valid for these periods, it would be confirm other climate conditions. The results are shown in Fig. 2.   

 
Fig. 2. Variation of SPI and Wet, Normal and Dry period. 

In order to check the anisotropy, the conventional approach is to compare variograms in several directions 
(Goovaerts, 1997). In this study major angles of 0°, 45°, 90°, and 135° with an angle tolerance of ±22.5 were used 
for detecting anisotropy. However, there were distinct differences among the structures of the calculated 
variograms in the four directions so that the angle of 132° was as dominant direction among the other angels 
because of the best fit with variogram in this direction. Table 1 and 2 shows the parameters of the best fitted 
prevailing direction variograms obtained based on cross validation. 

Table 1  
Properties of the fitted prevailing direction variograms based on cross validation for kriging estimator and 
(a) 1991-1992 (Normal period), (b) 1996-1997 (Wet period) and (c) 1999-2000 (severe drought period). 
   Maximum (a) 
Model   Nugget Sill Range (m) R2 (%) RSS 
Exponential  1.82E-04 2.62E-03 271620 77.10 3.43E-07 
Gaussian  3.37E-04 1.43E-03 64380 81.80 2.71E-07 
Spherical   2.06E-04 1.53E-03 86480 78.00 3.29E-07 

  Average (a) 
Exponential  1.77E-04 2.57E-03 264840 77.90 3.29E-07 
Gaussian  3.33E-04 1.42E-03 64137 82.60 2.59E-07 
Spherical   2.02E-04 1.52E-03 86110 78.80 3.14E-07 

  Minimum (a) 
Exponential  1.75E-04 2.61E-03 269340 78.10 3.27E-07 
Gaussian  3.31E-04 1.42E-03 64397 82.80 2.57E-07 
Spherical   2.00E-04 1.52E-03 85780 79.00 2.31E-07 
   Maximum (b) 
Model   Nugget Sill Range R2 (%) RSS 
Exponential  4.00E-05 5.30E-03 303300 91.40 2.48E-07 
Gaussian  5.00E-04 3.61E-03 94015 94.20 1.66E-07 
Spherical   1.26E-04 3.03E-03 101100 92.10 2.27E-07 
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  Average (b) 
Exponential  4.86E-04 3.58E-03 93496 94.60 2.31E-07 
Gaussian  3.00E-05 5.29E-03 303300 92.00 1.55E-07 
Spherical   1.12E-04 3.02E-03 101100 92.70 2.11E-07 

  Minimum (b) 
Exponential  4.68E-04 3.40E-03 90066 95.00 2.12E-07 
Gaussian  1.00E-05 5.30E-03 303300 92.60 1.44E-07 
Spherical   1.03E-04 3.01E-03 101100 93.30 1.93E-07 

   Maximum (c) 
Model   Nugget Sill Range R2 (%) RSS 
Exponential  1.00E-05 4.73E-03 303300 93.40 3.97E-07 
Gaussian  2.20E-04 4.81E-03 111214 96.80 1.15E-07 
Spherical   1.00E-06 2.81E-03 101100 94.10 3.07E-07 

  Average (c) 
Exponential  0.00001 4.34E-03 303300 94.80 2.94E-07 
Gaussian  1.90E-04 3.59E-03 96873 97.50 7.48E-08 
Spherical   1.00E-06 2.58E-03 101100 95.50 2.18E-07 

  Minimum (c) 
Exponential  1.00E-05 4.34E-03 303300 94.80 2.79E-07 
Gaussian  2.00E-04 3.55E-03 96527 97.50 7.37E-08 
Spherical   1.00E-06 2.58E-03 101100 95.50 2.06E-07 
 
 

Table 2  
Properties of the fitted prevailing direction variograms based on cross validation for co-kriging estimator 
and (a) 1991-1992 (Normal period), (b) 1996-1997 (Wet period) and (c) 1999-2000 (severe drought period). 
    Maximum (a) 
Model   Nugget Sill Range R2 (%) RSS 
Exponential  1.82E-04 2.62E-03 271620 77.10 3.44E-07 
Gaussian  3.37E-04 1.43E-03 64380 81.80 2.73E-07 
Spherical   2.06E-04 1.53E-03 86480 78.00 3.29E-07 

  Average (a) 
Exponential  1.77E-04 2.57E-03 264840 77.90 3.29E-07 
Gaussian  3.33E-04 1.43E-03 64137 82.60 2.59E-07 
Spherical   2.02E-04 1.52E-03 86110 78.80 3.14E-07 

  Minimum (a) 
Exponential  1.75E-04 2.61E-03 269340 78.10 3.27E-07 
Gaussian  3.31E-04 1.43E-03 64397 82.80 2.57E-07 
Spherical   2.00E-04 1.52E-03 85780 79.00 3.13E-07 
    Maximum (b) 
Model   Nugget Sill Range R2 (%) RSS 
Exponential  4.00E-05 5.30E-03 303300 91.40 2.48E-07 
Gaussian  5.00E-04 3.61E-03 94015 94.20 1.66E-07 
Spherical   1.26E-04 3.03E-03 101100 92.10 2.27E-07 

  Average (b) 
Exponential  3.00E-05 5.29E-03 303300 92.00 2.31E-07 
Gaussian  4.86E-04 3.58E-03 93496 94.60 1.55E-07 
Spherical   1.12E-04 3.02E-03 101100 92.70 2.11E+07 
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  Minimum (b) 
Exponential  1.00E-05 5.30E-03 303300 92.60 2.12E-07 
Gaussian  4.68E-04 3.41E-03 90066 95.00 1.44E-07 
Spherical   1.03E-04 3.00E-03 101100 93.30 1.93E-07 
    Maximum (c) 
Model   Nugget Sill Range R2 (%) RSS 
Exponential  1.00E-05 4.73E-03 303300 93.40 3.97E-07 
Gaussian  2.20E-04 4.81E-03 111214 96.80 1.15E-07 
Spherical   1.00E-06 2.81E-03 101100 94.10 3.07E-07 

  Average (c) 
Exponential  1.00E-05 4.34E-03 303300 94.80 2.94E-07 
Gaussian  1.90E-04 3.59E-03 96873 97.50 7.49E-08 
Spherical   1.00E-06 2.58E-03 101100 95.50 2.18E-07 

  Minimum (c) 
Exponential  1.00E-05 4.34E-03 303300 94.80 2.79E-07 
Gaussian  2.00E-04 3.55E-03 96527 97.50 7.37E-08 
Spherical   1.00E-06 2.58E-03 101100 95.50 2.06E-07 

Table 1 is indicated the properties of fitted variograms for Kriging estimator and Table 2 is related to co-
kriging estimator. Gaussian model was the dominant type of model that fitted the data because of the low RSS and 
high R2. Additionally, low nugget effect and consequently low nugget-to-sill ratio generally can be used to classify 
the spatial dependence (Cambardella et al., 1994). A variable is considered to have strong spatial dependence if 
the ratio is less than 0.25, and has a moderate spatial dependence if the ratio is between 0.25 and 0.75; otherwise 
the variable has a weak spatial dependence (Liu et al., 2006). The results in Tables 1 and 2 indicated that in three 
periods, both estimator and three ground water levels, nugget-to-sill ratio is less than 0.25. As a result, there is a 
strong spatial dependence among the ground water level data. Obviously, it can be seen from tables 1 to 3 that 
Gaussian model has the least RSS and the highest R2 for 3 periods and it can be concluded that the Gaussian model 
in dry period has the least RSS and the highest R2 in compare with the other period. These results are valid for co-
kriging method. 

After selecting the Gaussian model, Kriging and co-kriging were applied for estimation of maximum, average 
and minimum groundwater level across the study area. The performance criteria were applied to the sampled data 
which were considered for evaluating methods verification. Table 3 summarized the results of applying the 
performance criteria that mentioned earlier. The plot of the Gaussian semivariogram and the samples are shown in 
Fig. 3. It is necessary to analyze the spatial variability of the data by semivariance function. Fig. 3 illustrates the 
semivariance value of primary variables (groundwater table) of the study area. 

Table 3  
The performance of estimation with kriging and co-kriging methods. 
 
 
Year 

 
 
Method 

Criteria 
RMSE 

 
MRE 

Maximum Average Minimum 
 

Maximum Average Minimum 
1991-
1992 

Kriging 19.69 19.59 19.4 
 

0.0124 0.0121 0.0120 
Co-kriging 19.96 19.82 19.58 

 
0.0124 0.0122 0.0121 

1996-
1997 

Kriging 25.79 25.26 24.68 
 

0.0130 0.0129 0.0128 
Co-kriging 25.11 24.87 24.59 

 
0.0119 0.0118 0.0118 

1999-
2000 

Kriging 13.41 12.08 12.73 
 

0.0089 0.0079 0.0083 
Co-kriging 13.32 12.14 12.78 

 
0.0089 0.0084 0.0087 
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Fig. 3. Fitted variograms a) Maximum, b) Average and c) Minimum groundwater level in the study area. 

The high value of obtained RMSE can be related to groundwater table which standardized by mean sea level 
(MSL). If the groundwater table depth was used, the value of RMSE would be very smaller than this result. For this 
reason, the MRE was used to evaluation the performance of applied methods. The results of table 8 showed that 
minimum value of RMSE and MRE are related to drought period for two kriging and co-kriging estimator. Also, the 
normal and wet period were putted in the next rank, respectively as the accuracy. Also, the accuracy of kriging 
method is higher than co-kriging in estimating groundwater level in three levels (maximum, minimum and average) 
and for normal and dry period; nevertheless, co-kriging has the better accuracy in wet period for all of the levels. 

The Table 3 presents that the accuracy of the kriging and co-kriging methods enhance with decrease the 
groundwater level. For example, the accuracy of the methods in estimating minimum groundwater level is higher 
than average and maximum. It means, when the groundwater table depth is deeper, the accuracy is higher and 
inversely. The reason of this result can be related to this point that in deep groundwater table depth, the 
fluctuations is more stable than shallow depth. In the other hand, in this condition, groundwater table less affected 
by evapotranspiration, capillary fringe and the other component of water balance. It can be concluded that kriging 
and co-kriging had no significant difference between the performance criteria; consequently, the kriging method 
with less input is proposed for mapping the groundwater level. Hence, the kriging method is used for estimating to 
groundwater level of study area in all wet, normal and dry period and for 3 ground water levels (maximum, 
average and minimum). The results showed in the Figs. 4, 5 and 6. 
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Fig. 4. The kriged map of the groundwater Maximum level a) Normal, b) Wet and c) Dry. 

 
Fig. 5. The kriged map of the groundwater Mean level a) Normal, b) Wet and c) Dry. 
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Fig. 6. The kriged map of the groundwater Minimum level a) Normal, b) Wet and c) Dry. 

Based on Fig. 4, 5 and 6, it can be observed that the variation of isolevel lines in dry period is very smooth 
compared with normal and wet periods. The groundwater level in west north parts of the study area varies sharply 
at short distances in wet period; although, this point not be seen in other climate conditions to such region. This 
can be related to recharge of plain in this part. Obviously, the density of isolevel lines is greater than normal and 
dry period. The groundwater isolevel lines in the east northern and west southern parts of the study have 
relatively less density than other parts. Due to plain topography, the outlet of the watershed is located in the west 
south part of the region that the kriged map is correspond to this reality. Since kriging is an exact interpolator 
which honors the real value of the data points during interpolation, and also due to its inherent accuracy in 
interpolation between known points (Leuangthong et al., 2004), it is believed that applying kriging is helpful in 
detecting the problematic areas, and aids the managers in management of water resources (Ahmadi and 
Sedghamiz, 2007). 

4. Conclusion 

In this study geostatistical methods (kriging and cokriging) were applied on the maximum, minimum, and 
Average groundwater level of 48 observation wells. SPI index was used to specify the climate condition and the 
1991-1992, 1996-1997 and 1999-2000 were categorized as wet, dry, and normal periods. The Gaussian model is 
selected as the best semivariogram for fitting on the measured data based on nugget-to-sill ratio, RSS and R2. 
Results demonstrated that although both methods were acceptable, kriging gave more accurate results in mapping 
the groundwater level across the study area. However, this result is not correspond the results that Ahmadi and 
Sedghamiz (2008) reported. Moreover, the accuracy of Kriging and cokriging methods in estimating minimum 
groundwater level is higher than average and maximum. Ultimately, it was concluded that using the geostatistical 
technique is a useful approach for managing water recourse especially in arid and semi-arid areas.  
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