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Abstract 

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to 
computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). 
BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG 
signals, and by using a classifier to identify the user’s mental state from such features. In this study, we have 
considered the BCI Competition data sets 2b-2008; additionally, Multi-Taper Common Spatial Pattern (MTCSP) 
feature extraction method is used for extracting the features of right and left hand data, Logistic Regression 
(Logreg) classifier is chosen to classify the data sets. In this paper, TPR, FPR, ACC and k function are used as 
evaluation criteria. The comparison of the results with the results of the BCI competition 2008 has proved the 
effectiveness, high accuracy and resolution of the proposed method. The results have shown that MTCSP method 
provides even higher classification accuracy. It points out that utilizing suitable preprocessing to keep the EEG 
signal free of redundant information is for sure a very important in the BCI development. 
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1. Introduction 

For several years, many efforts have been done to use the electro-encephalogram (EEG) as a new 
communication channel between human brain and computer. This new communication channel is called EEG-
based brain-computer interface (BCI). Most of these efforts have been dedicated to the improvement of the 
accuracy and capacity of this EEG-based communication channel. Several factors may affect the performance of 
the BCI. These factors include the brain signal used as the input of the BCI, the signal processing methods used for 
feature selection and classification, cognitive tasks to be intended, and subject training. Different types of brain 
signals are used to detect the subjects’ intention. Thus far, slow cortical potentials (Hinterberger et al., 2004), 
oscillatory EEG activity (Mason and Brich, 2000; Pfurtscheller and Neuper, 2001; Wolpaw et al., 2000) and various 
types of event-related potentials including readiness potential (Barke et al., 2005), steady-state visual-evoked 
potential (SSVEP) (Pfurtscheller et al., 1998) and P300 (Serby et al., 2005) have been utilized in different BCI 
systems (Erfanian and Erfani, 2004). 

To classify the EEG patterns, feature vectors must be created. The classification performance is profoundly 
affected by the choice of feature set. Even when the features presented contain enough information about the 
output class, they may not predict the output correctly because the dimension of feature space may be so large 
that it may require numerous instances to determine the relationship. It was reported that the performance of 
classifier systems deteriorates as new irrelevant features are added (Erfanian and Erfani, 2004; Kwak, 2003). The 
process of BCIs systems have been shown in Fig. 1. 

 
Fig. 1. BCI block diagram (Kolodziei et al., 2012). 

EEG-based BCIs systems measure specific features of EEG activity and translate these features into device 
commands. One of the most difficult problems in BCI development is the restricted data throughput that can be 
achieved (Wolpaw, 2002). This information transfer rate needs to be improved, and often a balance must be 
maintained between accuracy and speed one way for improving this problem is to consider the use of multiple 
classes. Furthermore, there is always a search for a method which can lead to a better result and higher accuracy 
(Manoochehri, 2010). BCI is composed of signal collection and processing, pattern identification and control 
systems (Liu et al., 2005; Suleiman et al., 2010). The purpose of this study is to control the hand grasp for both 
right and left hand. We have used BCI Competition data sets 2b-2008 and Multi-Taper Common Spatial Pattern 
(MTCSP) feature extraction method has been used for extracting the features of right and left hand data. Logistic 
Regression classifier (Logreg) has been chosen to classify the data. Results of this methods have been compared 
with the results of the BCI Competition 2008 data sets 2b. The MTCSP method was originally proposed (Muller-
Gerking et al., 1999; Ramoser et al., 2000). This method leads to a projection matrix, the rows of which function as 
discriminative spatial filters only distinguishing between two conditions.  

Having signals projected with projection matrix computed from training trials, the features for classification 
proper are vectors whose elements are the variances of the projected signals (Manoochehri et al., 2010). The 
MTCSP algorithm is often used to optimally discriminate between two classes of EEG data based on simultaneous 
diagonalization of two covariance matrices (Ramoser et al., 2000). Logistic Regression is an approach to learning 
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functions of the form f: X→Y, or P(Y/X) in the case where Y is discrete-valued, and X= ˂X1.....Xn˃ is any vector 
containing discrete or continuous variables (Mitchell, 2015) (Fig. 2). 

 
Fig. 2. Form of the logistic function. In Logistic Regression, P(Y/X) is assumed to follow this form (Mitchell, 2015). 

2. Methods 

In this paper, at first, data sets were collected, subsequently, eye artifacts were removed by Adaptive Noise 
Canceller (ANC). Multi-Taper Common Spatial Pattern (MTCSP) is used for feature extraction. Finally, Logreg 
classifier is used for classification and evaluation (Fig. 3). 

 
Fig. 3. BCI block diagram. 

2.1. Datasets 

In this work, BCI Competition 2008 -Graz data set B is used. This data set consists of EEG data from 9 subjects 
who were right-handed and had normal or corrected-to-normal vision they also were paid for participating in the 
experiments. All volunteers were sitting in an armchair, watching a screen monitor placed approximately 1m away 
at eye level. Depending on the cue visual stimuli which appears on the monitor of the computer, subject imagines 
the hand grasping or opening for right and left hand. If the visual stimuli does not appear, the subject does not 
perform a specific task. For each subject, 5 sessions are provided, whereby the first two sessions contain training 
data without feedback (screening), and the last three sessions were recorded with feedback. In this study, we used 
the cue-based screening paradigm consisting of two classes, namely the motor imagery (MI) of left hand (class 1) 
and right hand (class 2) which is comprised of 9 trials for right hand and 9 trials for left hand for each person. Three 
bipolar recordings (C3, Cz and C4) were recorded with a sampling frequency of 250 Hz. They were band pass 
filtered between 0.5 Hz and 100 Hz, and a notch filter at 50 Hz was enabled. At the beginning of each session, a 
recording of approximately 5 minutes was performed to estimate the EOG influence. The recording was divided 
into three blocks: (1) Two minutes with eyes open, (2) One minute with eyes closed, and (3) One minute with eye 
movements (Leeb et al., 2008). ANC filters using neural network has been utilized for real-time removing the eye 
blinks interference from the EEG signals (Singh, 2001). 
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Fig. 3. Imagination of hand movement. 

2.2. Multi-Taper Common Spatial Pattern (MTCSP) 

In this study we used BCILAB for applying MTCSP algorithm and Logreg classification. MTCSP is a experimental 
paradigm for all-frequency Common Spatial Patterns. The basic idea is to calculate CSP for each covariance matrix 
in the cross-spectrum, and to use multi-taper spectral estimation to ensure an optimal tradeoff between spectral 
precision and estimation noise. The default classifier is sparse logistic regression with elastic-net penalty. This 
paradigm also implements a second approach in which the cross-spectrum is not spatially filtered, but directly 
submitted to the classifier (Disciplined Cross-Spectral Regression). Table 1 indicates the parameters of BCILAB. 

Table 1 
Parameters of BCILAB. 
data = io_loadset('data sets/mary/nback.eeg') 
My approach MTCSP 
Sampling rate after resampling 250 
Epoch window relative to the target markers [0.5 3.5] 
Type of window function Rect 
Frequency range of interest [1  45] 
Spectral smoothing 5 
Sub-sample the spectrum 1 
Target markers {'769 ','768'} 
CSP pattern per band (times two) 3 
Machine learning function Logreg 

2.3. Evaluation criteria sample to sample 

We use this method to evaluate the performance of the classifier to estimate the classifier accuracy. This 
method is suitable for dividing different imagination each one another. In this work we use it for dividing 
imagination of right hand and left hand movement. There are two criteria TPR and FPR. 

FPR = FP 
FP + TP 

                                                                         (1) 

TPR = TP 
TP + FN 

Where, TP is the number of true positive, FP is the number of false positive, TN is the number of true 
negative, FN is the number of false negative. TPR  shows the rate of the true detection and FPR says the rate of 
false detection. Whatever the rate of  TPR is so much more and FPR is so much less classification is better. In good 
condition TPR is 1 and FPR is 0 (Blinowska and Zygierwicz, 2012). 
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2.3.1. Classification Accuracy and Error Rate (ACC and ERR) 

The Classification Accuracy (ACC) or the error rate are the most widely used evaluation criteria in BCI 
research. Nine out of fourteen datasets in the BCI competitions 2003 and 2005 used the accuracy or the error rate 
as the evaluation criterion. One possible reason for its popularity is that it can be very easily calculated and 
interpreted. However, it is important to note that the accuracy of a trivial (random) classifier is already 100%/M, 
(e.g. for M = 2 classes 50% are correct just by chance). If the ACC is smaller than this limit, an error occurred and 
further exploration is required. On the other hand, the maximum accuracy can never exceed 100%. Sometimes, 
this could be a disadvantage, especially when two classification systems should be compared and both provide a 
result close to 100% (Guyton, 1956). 

ERR = 1 - ACC          (2) 

ACC = P0 = 
∑M

i=1 nii    (3) 
N 

        N = ∑M
i=1 ∑

M
j=1 nij                     (4)       

Where N, is the number of the total samples and nii is the total number of samples which were detected 
correctly (Guyton, 1956). 

2.3.2. Cohen’s Kappa Coefficient (k) 

Cohen’s kappa coefficient k addresses several of the critiques on the accuracy measure. The calculation of k 
uses the overall agreement P0 = ACC, which is equal to the classification accuracy, and the chance agreement Pe. 

                      

k = P0 - Pe          (5) 
1 - Pe 

                                                 

Pe = ∑M
i=1 n:i n:i (6) 
N2 

With n:i and ni: being the sum of the ith column and the ith row, respectively. The kappa coefficient is zero if 
the predicted classes show no correlation with the actual classes. A kappa coefficient of 1 indicates perfect 
classification. Kappa values smaller than zero indicate that the classifier suggests a different assignment between 
output and the true classes (Guyton, 1956). 

3. Results 

Tables 1 and 2 show the results of the classification of suggested method in BCILAB and evaluating k for left 
hand data sets. Tables 3 and 4 show the results of the classification and evaluating k for right hand data sets . 

Table 1 
Results of the left hand data sets classification. 
Sub TPR FPR ERR ACC 
1 0.992 0.050 0.022 0.978 
2 0.975 0.217 0.089 0.911 
3 0.908 0.083 0.089 0.911 
4 0.975 0.100 0.050 0.950 
5 0.975 0.033 0.028 0.972 
6 0.975 0.017 0.022 0.978 
7 1 0.083 0.028 0.972 
8 0.938 0.212 0.113 0.887 
9 0.992 0.083 0.033 0.967 
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Table 2 
Results of evaluating k for left hand data sets. 
 
Sub 

 
P0 = ACC k = P0 - Pe Pe = 1 

1 - Pe M = 2 
1 0.978 0.96 
2 0.911 0.82 
3 0.911 0.82 
4 0.95 0.90 
5 0.972 0.94 
6 0.978 0.96 
7 0.972 0.94 
8 0.887 0.77 
9 0.967 0.93 

 
 

Table 3 
Results of the right hand data sets classification. 
Sub TPR FPR ERR ACC 
1 0.992 0.067 0.028 0.972 
2 0.967 0.250 0.106 0.894 
3 0.908 0.150 0.111 0.889 
4 1 0.014 0.005 0.995 
5 1 0 0 1 
6 0.967 0.067 0.044 0.956 
7 1 0 0 1 
8 0.967 0.100 0.056 0.944 
9 0.975 0.167 0.072 0.928 

 
 

Table 4 
Results of evaluating k for right hand data sets. 
 
Sub 

 
P0 = ACC k = P0 - Pe Pe = 1 

1 - Pe M = 2 
1 0.972 0.94 
2 0.894 0.79 
3 0.889 0.78 
4 0.995 0.99 
5 1 1 
6 0.956 0.91 
7 1 1 
8 0.944 0.89 
9 0.928 0.86 

4. Conclusion 

In this work, we present and analysis the ability and performance of MTCSP as a feature extraction method 
and Logreg classifier for left and right hand opening and grasping control. Results for left hand data sets show that 
TPR is in the ranges of 0.908 ~ 1, FPR is in the ranges of 0.017 ~ 0.217, ACC is in the ranges of 0.887 ~ 0.978, K is in 
the ranges of 0.77 ~ 0.96. Results for right hand data sets show that TPR is in the ranges of 0.908 ~ 1, FPR is in the 
ranges of 0 ~ 0.250, ACC  is in the ranges of  0.889 ~ 1, K is in the ranges of 0.78 ~ 1. So TPR is higher than FPR, ACC 
is well and it approaches to 1, k > 0 and almost 1. 
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In Tables 5 and 6 results of the classification of left and right hand date sets have been comprised of the 
results of BCI competition 2008 data sets 2b and K average is considered for them. According to the tables of K 
average, the suggested method is desirable and improvement of results is shown. Therefore, the MTCSP algorithm 
is a feature extraction method that can learn spatial filters maximizing the discriminability of two classes. MTCSP 
has been proven to be one of the most popular and efficient algorithms for BCI design, notably during BCI 
competitions. Despite its popularity and efficiency, MTCSP is also known to be highly sensitive to noise and to 
severely over fit with small training sets. Since EEG measurements are generally contaminated by artifacts and 
noise, the MTCSP algorithm is, thus, highly sensitive to these contaminants. This motivated the research for sparse 
solutions in the MTCSP algorithm. In these methods, the sparse spatial filters project the signals in the most 
discriminative direction based on a smaller number of electrodes at the expense of lowering the accuracy. These 
patterns maximize the difference between the populations and have been proved to be a powerful and successful 
method for the accurate detection and recognition of brain patterns. 
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